Math 215 - Problem Set 8: Green's Theorem, Curl and Divergence, Parametric Surfaces and thier Areas

Math 215 SI April 6, 2025

1 Review

1.1 Green's Theorem

Theorem 1 (Green's Theorem). Let C be a positively oriented, piecewise smooth, simple closed curve in the plane, and let D be the region bounded by C. If P(x, y)and Q(x, y) are functions of (x, y) with continuous partial derivatives on an open region that contains D, then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

In this theorem, P and Q are the components of a vector field $\mathbf{F} = (P, Q)$, and the left-hand side is the line integral of \mathbf{F} around the curve C. The righthand side is the double integral of the curl of \mathbf{F} over the region D.

1.2 Curl and Divergence

1.2.1 Curl

Theorem 2 (Curl). Let $\mathbf{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ be a vector field in \mathbb{R}^3 . The curl of \mathbf{F} is defined as

$$curl\mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

The curl of a vector field measures the rotation or "twisting" of the field at a point. It is a vector quantity that points in the direction of the axis of rotation, and its magnitude represents the strength of the rotation.

Conservative Fields. If the curl of a vector field **F** is zero, i.e., $\nabla \times \mathbf{F} = 0$, then **F** is said to be a conservative vector field. This means that **F** can be expressed as the gradient of a scalar potential function ϕ , such that $\mathbf{F} = \nabla \phi$. In physical terms, this implies that the work done by the field along any closed path is zero, and the field is path-independent.

1.2.2 Divergence

Theorem 3 (Divergence). Let $\mathbf{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ be a vector field in \mathbb{R}^3 . The divergence of \mathbf{F} is defined as

$$div \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

The divergence of a vector field measures the "spreading out" or "convergence" of the field at a point. It is a scalar quantity that indicates whether the field is diverging from or converging towards that point. **Propisition.** The divergence of the curl of any vector field is zero, i.e., $\nabla \cdot (\nabla \times \mathbf{F}) = 0$. This means that the curl of a vector field has no net "outflow" at any point in space. This is a consequence of the fact that the curl measures rotation, while divergence measures "spreading out".

1.3 Parametric Surfaces and their Areas

Definition 1. A parametric surface is a surface in \mathbb{R}^3 defined by a vectorvalued function $\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v))$, where (u, v) are parameters that vary over some region in the uv-plane. The surface is the image of this parameterization.

Consider the vector function $\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v))$

• The partial derivatives of $\mathbf{r}(u, v)$ with respect to u and v are given by:

$$\frac{\partial \mathbf{r}}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right), \quad \frac{\partial \mathbf{r}}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right).$$

These vectors lie in the tangent plane to the surface at a given point.

• The normal vector to the tangent plane at a point on the surface is given by the cross product of the partial derivatives:

$$\mathbf{n} = \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}.$$

This vector is perpendicular to the tangent plane and can be used to compute the surface area.

2 Problems

2.1 Problem 1

 $\mathbf{F} = < xyz, y\sin(z), y\cos(x) >$

- Compute the curl of ${\bf F}.$
- Compute the divergence of **F**.

2.2 Problem 2

Suppose that D is the bounded region in the plane that has boundary given by the oriented simple closed piecewise smooth curves C_1, C_2, C_3 , and, C_4 as in the picture. Suppose $\mathbf{F} = \langle P, Q, 0 \rangle : \mathbb{R}^3 \to \mathbb{R}^3$ is a vector field and P and Q hav continuous partial derivaties on \mathbb{R}^2 . If

$$\oint_{C_k} \mathbf{F} \cdot d\mathbf{r}$$

find $\int \int_D (Q_x - P_y) dA = \int \int_D (\nabla \times F) \cdot \hat{k} dA.$

Figure 1: Boundary curves C_1, C_2, C_3, C_4 of the region D.

2.3 Problem 3

Evaluate the line integral $\int_C y^3 dx + (3x - x^3) dy$, where C is the curve $x^2 + y^2 = 1$ oriented counterclockwise, using Green's Theorm.