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0.1 Three Dimensional Coordinate Systems

In three-dimensional coordinate systems, points are represented by ordered
triples (x, y, z). The three axes (x, y, and z) are mutually perpendicular, and
the position of a point is determined by its distances from these axes.

0.2 Vectors

Vectors are mathematical objects that have both magnitude and direction. They
are often represented as directed line segments or as ordered triples (x, y, z)
in three-dimensional space. Vectors can be added together and multiplied by
scalars.

0.3 Dot Product

The dot product (or scalar product) of two vectors is a way of multiplying them
to get a scalar. For vectors a = (a1, a2, a3) and b = (b1, b2, b3), the dot product
is given by a ·b = a1b1+a2b2+a3b3. It is used to find the angle between vectors
and to determine orthogonality. The cosine of the angle θ between two vectors
a and b can be found using the dot product and the magnitudes of the vectors.
The formula is given by:

cos(θ) =
a · b
|a||b|

where |a| and |b| are the magnitudes of a and b, respectively.

0.4 Cross Product

The cross product (or vector product) of two vectors in three-dimensional space
results in a third vector that is perpendicular to the plane containing the original
vectors. For vectors a and b, the cross product a×b is given by a determinant
involving the unit vectors i, j, and k. The cross product of two vectors a =
(a1, a2, a3) and b = (b1, b2, b3) is given by:

a× b =

 i j k
a1 a2 a3
b1 b2 b3


Expanding the determinant, we get:

a× b = (a2b3 − a3b2)i− (a1b3 − a3b1)j+ (a1b2 − a2b1)k

0.5 Equation of lines and planes

The equation of a line in three-dimensional space can be written in parametric
form using a point and a direction vector. The equation of a plane can be
written in the form Ax+By+Cz = D, where A, B, and C are the coefficients
that define the normal vector to the plane.
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0.6 Cylinders

Cylinders are surfaces generated by moving a line (the generator) parallel to
itself along a curve (the directrix). In three-dimensional space, a common type
of cylinder is the right circular cylinder, which has a circular base and a fixed
height.

0.7 Quadric Surfaces

Quadric surfaces are the graphs of second-degree equations in three variables.
Examples include ellipsoids, hyperboloids, paraboloids, and cones. These sur-
faces can be classified based on the signs and values of the coefficients in their
defining equations.

0.8 Vector Functions and Space Curves

0.8.1 Vector Function Definition

A vector function is a function that takes a real number as input and outputs
a vector. It can be written as r(t) = ⟨f(t), g(t), h(t)⟩, where f(t), g(t), and h(t)
are scalar functions of t.

0.8.2 Space Curve Definintion

A space curve is the set of all points r(t) in space as t varies over an interval.
It can be thought of as the path traced out by a particle moving in space.

0.8.3 Integrals, Derivatives, and Limits

Consider a vector function r(t) = ⟨f(t), g(t), h(t)⟩.

� The derivative of r(t) is r′(t) = ⟨f ′(t), g′(t), h′(t)⟩.

� The integral of r(t) is
∫
r(t)dt = ⟨

∫
f(t)dt,

∫
g(t)dt,

∫
h(t)dt⟩.

� The limit of r(t) as t approaches t0 is limt→t0 r(t) = ⟨limt→t0 f(t), limt→t0 g(t), limt→t0 h(t)⟩.

0.8.4 Tangent Lines

The tangent line to the curve r(t) at the point r(t0) is the line that passes
through r(t0) and has the same direction as the velocity vector r′(t0).

0.9 Arc Length

Given a curve parameterized by r(t) the arc length L between r(a) and r(b) is
given by:

L =

∫ b

a

∥r′(t)∥ dt =
∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt
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0.10 Motion in Space

Given a position vector r(t) that describes the position of a particle at time t, the
velocity vector is v(t) = r′(t) and the acceleration vector is a(t) = v′(t) = r′′(t).

0.11 Functions of Several Variables

0.11.1 Function of Serveral Variables Definition

A function of several variables is a function that takes two or more variables as
input and produces a single output. For example, a function f of two variables
x and y can be written as f(x, y). The domain of f is the set of all pairs (x, y)
for which f(x, y) is defined, and the range of f is the set of all possible values
of f(x, y).

0.11.2 Level Curves

A level curve is given by k = f(x, y), where k is a constant. It represents the set
of all points (x, y) in the domain of f where the function f(x, y) takes on the
same value k. Level curves are useful for visualizing functions of two variables,
as they provide a way to see how the function behaves in different regions of its
domain.

0.11.3 Contour Map

A contour map is a graphical representation of a function of two variables,
f(x, y), where contour lines are drawn to connect points that have the same
function value. Each contour line represents a specific value of the function,
and the spacing between the lines indicates the rate of change of the function.
Contour maps are useful for visualizing the topography of a surface, as they
provide a way to see how the function values change over the domain.

0.11.4 Contour Surfaces (Extending level curves to higher dimen-
sions)

A contour surface is the three-dimensional analog of a contour line (or level
curve). It is a surface in three-dimensional space representing points where a
function of three variables f(x, y, z) is constant. For example, the equation
f(x, y, z) = k defines a contour surface for a constant k. Contour surfaces are
useful for visualizing functions of three variables, as they provide a way to see
how the function behaves in different regions of its domain.

0.12 Partial Derivatives

0.12.1 Definition

Partial derivatives are the derivatives of functions of multiple variables with re-
spect to one variable, while keeping the other variables constant. For a function
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f(x, y), the partial derivative with respect to x is denoted by ∂f
∂x and is defined

as:

∂f

∂x
= lim

∆x→0

f(x+∆x, y)− f(x, y)

∆x

Similarly, the partial derivative with respect to y is denoted by ∂f
∂y and is

defined as:

∂f

∂y
= lim

∆y→0

f(x, y +∆y)− f(x, y)

∆y

Partial derivatives are used to analyze the rate of change of a function with
respect to each of its variables independently.

0.12.2 Theorem

If fxy and fyx are continuous then we have fxy = fyx

0.13 Tangent Planes and Linear Approximations

0.13.1 Tangent Planes

Given a differentiable function f(x, y) , the equation of the tangent plane to the
surface z = f(x, y) at the point (x0, y0, z0) is given by:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

where fx and fy are the partial derivatives of f with respect to x and y,
respectively, evaluated at (x0, y0).

0.13.2 Linear Approximations

The linear approximation (or tangent plane approximation) of a function f(x, y)
near a point (x0, y0) is given by:

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

This approximation is useful for estimating the value of the function near
the point (x0, y0) using the values of the function and its partial derivatives at
that point.

0.14 Maximum and Minimum Values: Local Extrema

0.14.1 Second Derivative Test

H =

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ = fxxfyy − f2
xy

(1) If H > 0 and fxx > 0, then f has a local minimum at (a, b).
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(2) If H > 0 and fxx < 0, then f has a local maximum at (a, b).

(3) If H < 0, then f has a saddle point at (a, b).

(4) If H = 0, then the test is inconclusive.

0.15 Maximum and Minimum Values: Global Extrema

0.15.1 Extreme Value Theorem

If f is continuous on a closed and bounded set D, then f has both a maximum
and minimum value on D.

(1) Evaluate f at all critical points in D.

(2) Find the maximum and minimum values of f on the boundary of D.

(3) Compare the values from steps (1) and (2) to find the global maximum
and minimum values of f on D.

(4) Largest value is the global maximum, smallest value is the global mini-
mum.

0.16 Lagrange Multipliers

To find the maximum and minimum values of a function f(x, y, z) subject to
the constraint g(x, y, z) = k, we solve the system of equations:

(1) ∇f = λ∇g

(2) g(x, y, z) = k

(3) where ∇f =

fxfy
fz

 and ∇g =

gxgy
gz


(4) and λ is the Lagrange multiplier.

(5) The solutions to the system of equations are the critical points of f subject
to the constraint g(x, y, z) = k.

0.17 Double Integrals over Rectangles

For a function f(x, y) defined on a rectangle R = [a, b]×[c, d], the double integral
of f over R is defined as∫ d

c

∫ b

a

f(x, y) dx dy = lim
m,n→∞

m∑
i=1

n∑
j=1

f(xij , yij)∆x∆y
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0.17.1 Fubini’s Theorem

If f(x, y) is continuous on a rectangle R = [a, b]× [c, d], then∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx

0.18 Double Integrals over General Regions

Let f(x, y) be a continuous function defined on a region D in the xy-plane.

0.18.1 Type I Regions

A region D is a Type I region if it is bounded by the graphs of two functions
y = g1(x) and y = g2(x), and the lines x = a and x = b. The double integral of
f over D is ∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

0.18.2 Type II Regions

A region D is a Type II region if it is bounded by the graphs of two functions
x = h1(y) and x = h2(y), and the lines y = c and y = d. The double integral of
f over D is ∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy

0.18.3 Properties

� The area of D is given by

Area(D) =

∫∫
D

1 dA

� The average value of f over D is given by

Avg(f) =
1

Area(D)

∫∫
D

f(x, y) dA

� The net volume of the solid bounded by the surface z = f(x, y) and the
region D is given by

Volume =

∫∫
D

f(x, y) dA

� Pay attention to symmetry when setting up double integrals over general
regions. If D is symmetric with respect to the x-axis, y-axis, or origin,
you can take advantage of this symmetry to simplify the integral.

8



0.19 Polar Coordinates

0.19.1 Converting Between Rectangular and Polar Coordinates

The conversion formulas between rectangular and polar coordinates are

x = r cos θ

y = r sin θ

r =
√

x2 + y2

tan θ =
y

x

0.19.2 Double Integrals in Polar Coordinates

If f(x, y) is a continuous function defined on a region D in the xy-plane, then
the double integral of f over D can be expressed in polar coordinates as∫∫

D

f(x, y) dA =

∫∫
E

f(r cos θ, r sin θ) r dr dθ

where D is the region in the xy-plane that corresponds to the region E in the
rθ-plane, and dA = r dr dθ.

0.20 Applications of Double Integrals

0.20.1 Mass

Consider a lamina which occupies a region D on the xy-plane. The density of
the lamina at a point (x, y) is given by δ(x, y). The mass of the lamina is given
by the double integral ∫ ∫

D

δ(x, y)dA

where dA = dxdy.

0.20.2 Center of Mass

The center of mass of the lamina is given by the point (x̄, ȳ) where

x̄ =
1

M

∫ ∫
D

xδ(x, y)dA

ȳ =
1

M

∫ ∫
D

yδ(x, y)dA

and M is the mass of the lamina.
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0.20.3 Surface Area

The surface area of a surface S on domain D is given by the double integral

∫ ∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA

where z = f(x, y) is the equation of the surface.

0.21 Triple Integrals

Let f(x,y,z) be a function defined on a volume V in R3. The triple integral of f
over V is given by ∫ ∫ ∫

V

f(x, y, z)dV

where dV = dxdydz. If V is defined by a ≤ x ≤ b, c ≤ y ≤ d, and e ≤ z ≤ f ,
then the triple integral can be written as∫ d

c

∫ b

a

∫ f

e

f(x, y, z)dzdxdy

0.21.1 Applications

� Volume: The volume of a solid occupying a region V in R3 is given by∫ ∫ ∫
V

dV

� Mass: The mass of a solid occupying a region V in R3 with density
δ(x, y, z) is given by ∫ ∫ ∫

V

δ(x, y, z)dV

� Center of Mass: The center of mass of a solid occupying a region V in
R3 is given by the point (x̄, ȳ, z̄) where

x̄ =
1

M

∫ ∫ ∫
V

xδ(x, y, z)dV

ȳ =
1

M

∫ ∫ ∫
V

yδ(x, y, z)dV

z̄ =
1

M

∫ ∫ ∫
V

zδ(x, y, z)dV

and M is the mass of the solid.
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0.22 Triple Integrals in Cylindrical Coordinates

In cylindrical coordinates, the triple integral of a function f(x, y, z) over a vol-
ume V is given by∫ ∫ ∫

V

f(x, y, z)dV =

∫ ∫ ∫
V

f(r cos(θ), r sin(θ), z)rdzdrdθ

where dV = rdzdrdθ.

0.23 Vector Fields

A vector field is a function that assigns a vector to each point in space. A vector
field F in R3 can be represented as:

F(x, y, z) = P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k

where P , Q, and R are scalar functions of x, y, and z.

(i) F is continuous if and only if coordinate functions P , Q, and R are con-
tinuous.

(ii) F is differentiable if and only if coordinate functions P , Q, and R are
differentiable.

0.24 Line Integrals

Let C be a smooth curve parameterized by (r(t)) on [a, b].

(i) The line integral of a scalar function f along the curve C is given by:∫
C

f(x, y, z)ds =

∫ b

a

f(r(t))∥r′(t)∥dt

where ds = ∥r′(t)∥dt is the differential arc length.

(ii) The line integral of a vector field F along the curve C is given by:∫
C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt

where dr = r′(t)dt is the differential vector along the curve. Note that if
F is a force field, then the line integral represents the work done by the
force field along the curve C.

0.25 Fundamental Theorem for Line Integrals

Let C be a smooth curve parameterized by (r(t)) on [a, b]. If F is a conservative
vector field, then there exists a scalar potential function f such that ∇f = F.
The fundamental theorem for line integrals states that:
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(i) The line integral of F along the curve C is given by:∫
C

F · dr = f(r(b))− f(r(a))

where f is the potential function for F.

(ii) The line integral is independent of the path taken from r(a) to r(b). And
if C is a closed curve, then:

∫
C

F · dr = 0

0.25.1 When is F conservative?

A vector field F is conservative if and only if the following conditions are satis-
fied:

(i) The vector field is defined on a simply connected domain.

(ii) The curl of the vector field is zero:

∇× F = 0

In two dimensions this is to say that

∂P (x, y)

∂y
=

∂Q(x, y)

∂x

0.26 Green’s Theorem

Theorem 1 (Green’s Theorem). Let C be a positively oriented, piecewise smooth,
simple closed curve in the plane, and let D be the region bounded by C. If P (x, y)
and Q(x, y) are functions of (x, y) with continuous partial derivatives on an open
region that contains D, then∫

C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

In this theorem, P and Q are the components of a vector field F = (P,Q),
and the left-hand side is the line integral of F around the curve C. The right-
hand side is the double integral of the curl of F over the region D.

0.27 Curl and Divergence

0.27.1 Curl

Theorem 2 (Curl). Let F = (P (x, y, z), Q(x, y, z), R(x, y, z)) be a vector field
in R3. The curl of F is defined as

curlF = ∇× F =

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
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The curl of a vector field measures the rotation or ”twisting” of the field at a
point. It is a vector quantity that points in the direction of the axis of rotation,
and its magnitude represents the strength of the rotation.

Conservative Fields. If the curl of a vector field F is zero, i.e., ∇× F = 0,
then F is said to be a conservative vector field. This means that F can be
expressed as the gradient of a scalar potential function ϕ, such that F = ∇ϕ.
In physical terms, this implies that the work done by the field along any closed
path is zero, and the field is path-independent.

0.27.2 Divergence

Theorem 3 (Divergence). Let F = (P (x, y, z), Q(x, y, z), R(x, y, z)) be a vector
field in R3. The divergence of F is defined as

divF = ∇ · F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

The divergence of a vector field measures the ”spreading out” or ”conver-
gence” of the field at a point. It is a scalar quantity that indicates whether the
field is diverging from or converging towards that point.

Propisition. The divergence of the curl of any vector field is zero, i.e., ∇ ·
(∇ × F) = 0. This means that the curl of a vector field has no net ”outflow”
at any point in space. This is a consequence of the fact that the curl measures
rotation, while divergence measures ”spreading out”.

0.28 Parametric Surfaces and their Areas

Definition 1. A parametric surface is a surface in R3 defined by a vector-
valued function r(u, v) = (x(u, v), y(u, v), z(u, v)), where (u, v) are parameters
that vary over some region in the uv-plane. The surface is the image of this
parameterization.

Consider the vector function r(u, v) = (x(u, v), y(u, v), z(u, v))

� The partial derivatives of r(u, v) with respect to u and v are given by:

∂r

∂u
=

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
,

∂r

∂v
=

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
.

These vectors lie in the tangent plane to the surface at a given point.

� The normal vector to the tangent plane at a point on the surface is given
by the cross product of the partial derivatives:

n =
∂r

∂u
× ∂r

∂v
.

This vector is perpendicular to the tangent plane and can be used to
compute the surface area.
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0.29 Surface Integrals (Scalar Functions)

Definition 2. Given a surface S parameterized by r(u, v), the surface integral
of a scalar function f(x, y, z) over the surface S is defined as:∫∫

S

f(x, y, z) dS =

∫∫
D

f(r(u, v))

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ dudv

where D is the parameter domain in the uv-plane, and
∥∥ ∂r
∂u × ∂r

∂v

∥∥ is the magni-
tude of the cross product of the partial derivatives, which gives the area element
of the surface.

Note that to compute the area of the surface integral S, we can set f(x, y, z) =
1. The surface integral then becomes the area of the surface:∫∫

S

dS =

∫∫
D

∥∥∥∥ ∂r∂u × ∂r

∂v

∥∥∥∥ dudv

0.30 Surface Integrals (Vector Fields)

Definition 3. Given a surface S parameterized by r(u, v) with a unit normal
vector n, the surface integral of a vector field F(x, y, z) over the surface S is
defined as: ∫∫

S

F · n dS =

∫∫
D

F(r(u, v)) ·
(
∂r

∂u
× ∂r

∂v

)
dudv

where D is the parameter domain in the uv-plane, and ∂r
∂u × ∂r

∂v is the cross
product of the partial derivatives, which gives the oriented area element of the
surface.

� If F is a velocity field of a fluid, then the flux∫ ∫
S

F · n dS

is the rate of flow across the surface S.

� The orientation of S is determined by the choice of the unit normal vector
n. The direction of n can be chosen to be outward or inward, depending
on the context of the problem.
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0.31 Stokes’ Theorem

Theorem 4 (Stokes’ Theorem). Let S be a smooth, oriented surface with bound-
ary curve C, and let F be a vector field whose components have continuous
partial derivatives on an open region containing S. Then,∫∫

S

(∇× F) · dS =

∮
C

F · dr

where dS = n dS is the oriented area element of the surface S, and dr is the
line element along the curve C.

If S = D is a domain in R2 and C = ∂D is the boundary of D, then Stokes’
theorem reduces to Green’s theorem.

0.32 Divergence Theorem

Theorem 5 (Divergence Theorem). Let V be a solid region in R3 with a piece-
wise smooth boundary surface S, oriented outward. Let F be a vector field whose
components have continuous partial derivatives on an open region containing V .
Then, ∫∫

S

F · n dS =

∫∫∫
V

(∇ · F) dV

where n is the outward unit normal vector to S, and ∇ · F is the divergence of
F.

� The divergence theorem relates the flux of a vector field through a closed
surface S to the triple integral of the divergence of the field over the volume
V enclosed by S.

� The surface integral
∫∫

S
F · n dS represents the total flux of the vector

field F across the boundary surface S.

� The volume integral
∫∫∫

V
(∇ ·F) dV represents the total ”outflow” of the

vector field F from the volume V .

� The divergence theorem is also known as Gauss’s theorem or Ostrograd-
sky’s theorem.

� The theorem requires that the vector field F is continuously differentiable
and that the region V is bounded and has a well-defined, piecewise smooth
boundary.
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